High-frequency affine mechanics and nonaffine relaxation in a model cytoskeleton.
نویسندگان
چکیده
The cytoskeleton is a network of crosslinked, semiflexible filaments, and it has been suggested that it has properties of a glassy state. Here we employ optical-trap-based microrheology to apply forces to a model cytoskeleton and measure the high-bandwidth response at an anterior point. Simulating the highly nonlinear and anisotropic stress-strain propagation assuming affinity, we found that theoretical predictions for the quasistatic response of semiflexible polymers are only realized at high frequencies inaccessible to conventional rheometers. We give a theoretical basis for determining the frequency when both affinity and quasistaticity are valid, and we discuss with experimental evidence that the relaxations at lower frequencies can be characterized by the experimentally obtained nonaffinity parameter.
منابع مشابه
Frequency-dependent stiffening of semiflexible networks: a dynamical nonaffine to affine transition.
By combining the force-extension relation of single semiflexible polymers with a Langevin equation to capture the dissipative dynamics of chains moving through a viscous medium we study the dynamical response of cross-linked biopolymer materials. We find that at low frequencies the network deformations are highly nonaffine, and show a low plateau in the modulus. At higher frequencies, this nona...
متن کاملDeformation of cross-linked semiflexible polymer networks.
Networks of filamentous proteins play a crucial role in cell mechanics. These cytoskeletal networks, together with various cross-linking and other associated proteins largely determine the (visco)elastic response of cells. In this Letter we study a model system of cross-linked, stiff filaments in order to explore the connection between the microstructure under strain and the macroscopic respons...
متن کاملMechanical response of semiflexible networks to localized perturbations.
Previous research on semiflexible polymers including cytoskeletal networks in cells has suggested the existence of distinct regimes of elastic response, in which the strain field is either uniform (affine) or nonuniform (nonaffine) under external stress. Associated with these regimes, it has been further suggested that a mesoscopic length scale emerges, which characterizes the scale for the cro...
متن کاملNonaffine correlations in random elastic media.
Materials characterized by spatially homogeneous elastic moduli undergo affine distortions when subjected to external stress at their boundaries, i.e., their displacements from a uniform reference state grow linearly with position , and their strains are spatially constant. Many materials, including all macroscopically isotropic amorphous ones, have elastic moduli that vary randomly with positi...
متن کاملEffect of Stress-Fiber Inclusion on the Local Stiffness of Cell Cytoskeleton Probed by AFM Indentation: Insights from a Discrete Network Model
In this paper, we analyze the effect of stress-fiber inclusion on the stiffness of an actin random network. To do this, use a discrete random network model to analyze the elastic response of this system in terms of apparent Young’s modulus. First, we showed that for a flat-ended cylindrical AFM indenter the total indentation force has a linear relation with the indentation depth and the indente...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 89 4 شماره
صفحات -
تاریخ انتشار 2014